Brownian motion and Stochastic Calculus Dylan Possamaï

Assignment 2

Exercise 1

Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space and let X, Y, and Z be random variables and suppose that Z is $\sigma(X, Y)$ -measurable. Use the monotone class theorem to show that there exists a measurable function $f : \mathbb{R}^2 \longrightarrow \mathbb{R}$ such that Z = f(X, Y).

Exercise 2

Fix two measurable processes X and Y on some probability space $(\Omega, \mathcal{F}, \mathbb{P})$.

- 1) Assume that X and Y are both right-continuous or both left-continuous. Show that they are \mathbb{P} -modifications of each other if and only if they are \mathbb{P} -indistinguishable.
- 2) Show that the previous result is not true in general.

Exercise 3

Let X be a process on a filtered probability space $(\Omega, \mathcal{F}, \mathbb{F}, \mathbb{P})$, where \mathbb{F} satisfies the usual conditions. We want to show

 $X \mathbb{F}$ -optional $\Longrightarrow X \mathbb{F}$ -progressively measurable $\Longrightarrow X \mathbb{F}$ -adapted and measurable.

- 1) Show that every F-progressively measurable process is F-adapted and measurable.
- 2) Assume that X is \mathbb{F} -adapted and that every path of X is right-continuous (resp. left-continuous). Show that X is \mathbb{F} -progressively measurable.
- 3) Show that $\mathcal{O}(\mathbb{F})$ is generated by all bounded, càdlàg, \mathbb{F} -adapted and measurable processes.
- 4) Use the monotone class theorem to show that every \mathbb{F} -optional process is \mathbb{F} -progressively measurable.

Exercise 4

Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space and $B \in \mathbb{P}$ -Brownian motion on [0, 1]. Let $k \in \mathbb{N}^*$, and $0 = s_1 < t_1 < s_2 < t_2 < \cdots < t_k < s_{k+1} = 1$. Find the law of $(B_{t_1}, B_{t_2}, \ldots, B_{t_k})$ conditional on $(B_{s_1}, \ldots, B_{s_{k+1}})$.

Let $D := \{a2^{-m} : m \in \mathbb{N}, a \in \{0, 1, \dots, 2^m\}\}$. Let Z_1, Z_2, \dots be an infinite sequence of i.i.d. standard normal random variables. Construct in terms of the Z_j a stochastic process $(W_t)_{t \in D}$ such that the law of W is equal to the law of $(B_t)_{t \in D}$.